On the Approximation of Blow-up Time for Solutions of Nonlinear Parabolic Equations
نویسندگان
چکیده
There are many nonlinear parabolic equations whose solutions develop singularity in finite time, say T. In many cases, a certain norm of the solution tends to infinity as time t approaches T. Such a phenomenon is called blow-up, and T is called the blow-up time. This paper is concerned with approximation of blow-up phenomena in nonlinear parabolic equations. For numerical computations or for other reasons, we often have to deal with approximate equations. But it is usually not at all clear if such wild phenomena as blow-up can be well reflected in the approximate equations. In this paper we present rather simple but general sufficient conditions which guarantee that the blow-up time for the original equation is well approximated by that for approximate equations. We will then apply our result to various examples. §
منابع مشابه
A note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملGlobal and blow-up solutions for quasilinear parabolic equations with a gradient term and nonlinear boundary flux
This work is concerned with positive classical solutions for a quasilinear parabolic equation with a gradient term and nonlinear boundary flux. We find sufficient conditions for the existence of global and blow-up solutions. Moreover, an upper bound for the ‘blow-up time’, an upper estimate of the ‘blow-up rate’ and an upper estimate of the global solution are given. Finally, some application e...
متن کاملTo The Memory of My Father ,
This thesis is concerned with the study of the Blow-up phenomena for parabolic problems, which can be defined in a basic way as the inability to continue the solutions up to or after a finite time, the so called blow-up time. Namely, we consider the blow-up location in space and its rate estimates, for special cases of the following types of problems: (i) Dirichlet problems for semilinear equat...
متن کاملFinite-time Blow-up and Global Solutions for Some Nonlinear Parabolic Equations
For a class of semilinear parabolic equations, we prove both global existence and finite-time blow-up depending on the initial datum. The proofs involve tools from the potential-well theory, from the criticalpoint theory, and from classical comparison principles.
متن کامل